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The onion-like carbon (OLC) was synthesised by annealing the nanodiamond
fabricated by detonation for 1 h at the temperature of 1150�C in the low vacuum
of 2 Pa. The OLC particles were characterised using a high-resolution transmis-
sion electron microscope (HRTEM) for observing its microstructure, an X-ray
diffractometer (XRD) for determining its crystal structure and component, and
a Raman spectrometer for confirming its content. The results showed that the
OLC particles exhibited similar shape to that of the original nanodiamond
particles. The average size of the OLC was found to be approximately 5 nm. The
transformation mechanism of the OLC from the nanodiamond by annealing at
lower temperature and lower vacuum was also discussed.

Keywords: onion-like carbon; nanodiamond; annealing; transformation;
characterisation

1. Introduction

Onion-like carbon (OLC) is a member of the fullerene family, which is a three-dimensional
structure closed carbon particle consisting of multi-layer concentric carbon sphere.
Professor Iijima [1] observed concentric rings with spacing of about 0.34 nm when he
studied the carbon film prepared by the method of arc discharge (vacuum, no protective
atmosphere) in a high-resolution transmission electron microscope (HRTEM). Moreover,
he pointed out that the diameter of the innermost layer small ring was approximately
0.71 nm, which was clearly the OLC fabricated through fragment graphite bending
and closure. This was the first OLC observed. However, at that time, his work was not
taken seriously because C60 had not yet been characterised. OLC attracted much more
attentions since Ugarte’s discovery [2].

Due to its unique structural and physical properties, OLC has been widely applied in
many fields, including nanoball bearings, nanoelectronic-magnetic devices [3,4], gas
storage [5,6], biotechnology [7], high-conductors or even superconductors [8], lubricants
and rubber intensifiers [9], radioactive tracers and radioactive substances, new materials of
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contrast agents [10,11], photovoltaic and fuel cells [12,13], stable reaction clusters in
chemistry and special performances catalysts [14].

During the past few years, a number of methods have been reported, such as annealing
soot or nanodiamond in vacuum [15], bombarding high-energy electrons onto carbon soot
in a HRTEM, implanting carbon ion into copper or silver at high temperatures,
radio-frequency (rf) plasma chemical vapour deposition [16] and arc discharge in water
[17] for manufacturing OLC. At the present time, the most effective method for fabricating
OLC is by annealing nanodiamond particles synthesised by detonation in vacuum at fixed
temperatures. However, for the OLC fabrication by annealing nanodiamond synthesised
by detonation in vacuum, the reported lowest temperature is from 1100�C to 1200�C [18]
and the lowest vacuum is 1.0� 10�6 Torr [19], respectively. These conditions are very
difficult for realising the volume-production of the OLC, which limits its applications.
Furthermore, mechanism for the transformation of the nanodiamond into OLC by
annealing in vacuum is not clear.

In this work, OLC was synthesised by annealing the nanodiamond synthesised by
detonation for 1 h at the temperature of 1150�C in the low vacuum of 2 Pa. The mechanism
for the transformation of the nanodiamond into OLC is presented below.

2. Experimental details

The nanodiamond used in this work was obtained from Shenzhen City Diamond
Source New Material Development Co., Ltd. (P. R. China). The nanodiamond was
fabricated by the method of TNT detonation under the absence of oxygen. The pressure
and the temperature were from 2.0 to 3.0GPa and from 2000 to 3000K [20], respectively,
during the detonation. The purification of the nanodiamond was carried out with a hot
mixture of concentrated H2SO4 and HClO4 acids in the 1 : 1 ratio in order to remove the
amorphous carbon and the graphite after the detonation. The nanodiamond particles had
an average size of about 5 nm. However, particle size varied from 2 to 12 nm. The details
on the microstructures, the surface states and the physical properties of the nanodiamond
have already been published in a previous paper [21].

The annealing experiments for fabricating the OLC were carried out in a vacuum
carbon furnace (ZT�25�20 type, Shanghai Chenrong Electric Furnace Co., Ltd., P. R.
China). The chamber size of the furnace was ’, 90� 120mm. The rated power was 25 kW,
the working voltage was from 0 to 27V. The rated temperature was approximately 2000�C
and the cold limited vacuum was 6–7� 10�3 Pa. The nanodiamond powder was put in a
graphite tube at first. Then the tube was placed in the furnace chamber. The furnace
chamber was vacuumed up to 2 Pa by a mechanical pump and a proliferation pump.
However, a cold trap using liquid nitrogen was applied in the vacuum line between the
diffusion pump and the furnace chamber, which prevented the oil from being into the
furnace vacuum chamber. Then it was heated up to 1150�C and kept for 1 h. The annealing
temperature was raised at a rate of 15�C/min. Finally, the annealed samples were cooled to
the room temperature in the furnace vacuum chamber.

A HRTEM was used to characterise the microstructures of the nanodiamond and the
OLC as-fabricated. An X-ray diffractometer (XRD) was used to determine the crystalline
microstructure and the containing elements of the sample annealed. A Raman spectrom-
eter was used to determine the sample species. The HRTEM experiments were carried out
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on a JEM-2010 microscope (Japan) at 200 keV with a point resolution of 0.21 nm. In the
HRTEM experiments, samples were dispersed in ethanol by ultrasonication and then
deposited on copper grids. The XRD experiments were carried out on a D/MAX-2500/PC
diffractometer (Japan) using Cu K� radiation. Raman spectra were obtained using
EQUINO� 55-type equipment (Germany).

3. Results and discussion

Figure 1 shows the HRTEM images of the nanodiamond and the OLC as-fabricated.
In Figure 1(a), we can see that the outlines of the particles were clear and the particles
took on diverse shapes. The nanodiamond particle size was in the range from 2 to 12 nm.
However, the average size of the nanodiamond was approximately 5 nm. Lattice fringes
corresponding to the (1 1 1) planes of diamond were obviously observed. The interlayer
spacing was about 0.206 nm, as shown in Figure 1(a), which agreed with that of the
diamond (1 1 1) planes. Figure 1(b) presents the HRTEM image of the OLC annealed from
the nanodiamond for 1 h and at the temperature of 1150�C. As seen in Figure 1(b), almost
all the nanodiamond particles were transformed into the OLC annealed for 1 h and at the
temperature of 1150�C. Moreover, the OLC took on diverse shapes including
quasi-spherical, elliptical, polyhedral and deformed onions. The shapes of the OLC
were similar to that of the original nanodiamond. The average size of the OLC was
approximately 5 nm. The layers of the OLC were varied from several to 12. The spacing
between the interlayer was about 0.34 nm.

Figure 2 shows the selected area diffraction (SAD) patterns of the nanodiamond and
the OLC as-fabricated. From the SAD pattern of the nanodiamond shown in Figure 2(a),
it is clear that the SAD pattern of the nanodiamond had three clear circle, which
corresponded to the (1 1 1), (2 2 0) and (3 1 1) crystal plane diffraction of the nanodiamond,
respectively, from the internal to the external. This demonstrated that the nanodiamond

(a) (b)

Figure 1. HRTEM images of (a) nanodiamond and (b) OLC.
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was cubic diamond. Furthermore, the SAD pattern of the nanodiamond exhibited
a wide (1 1 1) line, which was evidently due to both the high dispersion and imperfection
of the particles, whose shape was approximately spherical. This was characteristic of
detonation-synthesised nanodiamond particles [22,23]. From Figure 2(b), we can see that
the OLC crystal structure coexisted with the amorphous carbon structure in the centre
of the OLC particle, which was agreed with the result of the OLC HRTEM image shown
in Figure 1(b).

Figure 3 shows the XRD patterns of the nanodiamond, the OLC and bulk graphite.
From the XRD pattern of the nanodiamond shown in Figure 3(a), it is clear that the
diffraction pattern of the nanodiamond showed three broader peaks located at 2�¼ 43.8�,
75.2� and 91.0�, respectively, corresponding to the (1 1 1), (2 2 0) and (3 1 1) diffraction
planes of the nanodiamond, which demonstrated that the nanodiamond crystal was cubic.
Another broad peak located at 2�¼ 25.0�, corresponding to the (0 0 2) diffraction plane of
nanographite, could be observed in Figure 3(a). All the diffraction peaks in Figure 3 were
obviously broadened due to the very small crystallite size, strains and defects of the
nanodiamond and the nanographite [24]. There was a stronger background at the lower
angle, (515�) distinct for the whole spectrum, suggesting that there was a certain amount
of amorphous carbon still existing in the nanodiamond powder synthesised by detonation.

Figure 3(b) and (c) shows the XRD patterns of the OLC annealed the nanodiamond
for 1 h and at the temperature of 1150�C and bulk graphite, respectively. In Figure 3(b),
two stronger and broader peaks locating at 2�¼ 24.9� and 43.5� could be clearly observed,
corresponding to the (0 0 2) and (1 0 0) diffraction planes of graphite, comparing to the
graphite XRD pattern shown in Figure 3(c). However, the diffraction peaks corresponding
to the nanodiamond disappeared. Based on this result, it could be concluded that the
graphitisation of the nanodiamond had been completed after annealing for 1 h and at the
temperature of 1150�C in a vacuum of 2 Pa. The appearance of the broad graphitic (0 0 2)
peak came from the onion-like nanographite [25]. The intensity of the (0 0 2) and (1 0 0)
onion-like nanographite was lower than that of graphite, respectively, as shown in

(b)(a)

Figure 2. SAD patterns of (a) nanodiamond and (b) OLC.

378 Q. Zou et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
1
0
 
1
5
 
J
a
n
u
a
r
y
 
2
0
1
1



Figure 3(b) and (c), which also demonstrated that the nanodiamond transformed into the

OLC under these conditions.
Figure 4 shows the Raman spectra of the nanodiamond, the OLC, the graphite

and bulk diamond in the wavenumber range from 400 to 2000 cm�1. From Figure 4(a), we

can see that the Raman wide peak in the vicinity of 1335 cm�1 is the characteristic peak of
the sp3 structural nanodiamond. Figure 4(d) shows the Raman spectrum for bulk

diamond, comparing with the Raman spectrum of the nanodiamond, the peak for the

nanodiamond moved to higher frequency, which led from the quantum effects of
restrictions [26]. The Raman wide peak in the vicinity of 1603 cm�1 is the characteristic

peak of the sp2 structural nanographite existing in the nanodiamond powder. The Raman

diffraction peak cross-section of the nanodiamond was approximately 1/70 of the
nanographite, which demonstrated that there was still a small quantity of graphite existing

in the nanodiamond powder.
Figure 4(b) shows the Raman spectrum of the OLC annealed the nanodiamond for

1 h at the temperature of 1150�C in vacuum of 2 Pa. The graphic (G) mode at

approximately 1587 cm�1 was usually regarded as a Raman-allowed vibration, corre-

sponding to the optical phonon modes of E2g symmetry in graphite and often called
tangential mode for the OLC [27], comparing with the Raman spectrum for bulk graphite
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Figure 3. XRD patterns of (a) nanodiamond; (b) OLC; and (c) graphite.
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shown in Figure 4(c). The diamond (D) band at about 1338 cm�1 was associated with
optical phonons close to the K point of the Brillouin zone in graphite and carbon
nanotubes. The weak D-bands demonstrate that the samples contained a very small
amount of amorphous carbon, revealing that high-purity OLC was synthesised in this
work. This was consistent with the result of the HRTEM image observed, as shown
in Figure 1(b). The ratio of the intensities of D–G peak was often used to estimate the
degree of perfection of graphene planes [28]. As can be calculated from Figure 4(b), the ID/
IG ratio was 0.21.

It can be seen from Figure 1(b) that the OLC coexisted with the untransformed
nanodiamond existing in the centre of the OLC. These results were in agreement with
the XRD results that the OLC coexisted with the nanodiamond when annealed for 1 h at
the temperature of 1150�C in a vacuum of 2 Pa, as shown in Figure 3(b). Moreover,
it should be noted that there existed diamond (1 1 1) sheets in the centre of the OLC
particle and the axis of the OLC was parallel to the original diamond (1 1 1) planes.
We believed that the transformation of the OLC from the nanodiamond preferentially
began at the (1 1 1) planes of the nanodiamond and the inner nanodiamond had an effect
on the outer shells in the shape. It was reasonable that the shape of the OLC particle was
similar to that of the original nanodiamond particle. Moreover, the average size of the
OLC was approximately 5 nm, which was similar to the size of the nanodiamond particle.
Therefore, we proposed that the graphite fragments exfoliating from the nanodiamond
(1 1 1) planes enclosed around the surface of the nanodiamond particles gradually and
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the OLC particles were developed simultaneously from the nanodiamond particle surface
towards the centre.

4. Conclusions

The OLC was fabricated by annealing the nanodiamond synthesised by detonation for 1 h
and at the temperature of 1150�C in low vacuum of 2 Pa. The shape and the average size
of the OLC were similar to the original nanodiamond particles. The OLC coexisted with
the untransformed nanodiamond in the centre. The number of the OLC graphitic shells
ranged from several to 12. The interlayer spacing of the OLC was approximately 0.34 nm.

The transformation of the OLC from the nanodiamond preferentially began at the
(1 1 1) planes of the nanodiamond and the inner nanodiamond had an effect on the outer
shells in the shape. The graphite fragments exfoliating from the nanodiamond (1 1 1)
planes enclosed around the surface of the nanodiamond particles gradually and the OLC
was developed simultaneously from the nanodiamond particle surface towards the centre.
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